LDMX Software
hcal::HcalRecProducer Class Reference

Performs basic HCal reconstruction. More...

#include <HcalRecProducer.h>

Public Member Functions

 HcalRecProducer (const std::string &name, framework::Process &process)
 Constructor.
 
virtual ~HcalRecProducer ()=default
 Destructor.
 
void configure (framework::config::Parameters &) override
 Grabs configure parameters from the python config file.
 
double getTOA (const ldmx::HgcrocDigiCollection::HgcrocDigi digi, double pedestal, unsigned int iSOI) const
 Gets Time of Arrival with respect to the SOI.
 
void produce (framework::Event &event) override
 Produce HcalHits and put them into the event bus using the HcalDigis as input.
 
- Public Member Functions inherited from framework::Producer
 Producer (const std::string &name, Process &process)
 Class constructor.
 
virtual void process (Event &event) final
 Processing an event for a Producer is calling produce.
 
- Public Member Functions inherited from framework::EventProcessor
 DECLARE_FACTORY (EventProcessor, EventProcessor *, const std::string &, Process &)
 declare that we have a factory for this class
 
 EventProcessor (const std::string &name, Process &process)
 Class constructor.
 
virtual ~EventProcessor ()=default
 Class destructor.
 
virtual void beforeNewRun (ldmx::RunHeader &run_header)
 Callback for Producers to add parameters to the run header before conditions are initialized.
 
virtual void onNewRun (const ldmx::RunHeader &run_header)
 Callback for the EventProcessor to take any necessary action when the run being processed changes.
 
virtual void onFileOpen (EventFile &event_file)
 Callback for the EventProcessor to take any necessary action when a new event input ROOT file is opened.
 
virtual void onFileClose (EventFile &event_file)
 Callback for the EventProcessor to take any necessary action when a event input ROOT file is closed.
 
virtual void onProcessStart ()
 Callback for the EventProcessor to take any necessary action when the processing of events starts, such as creating histograms.
 
virtual void onProcessEnd ()
 Callback for the EventProcessor to take any necessary action when the processing of events finishes, such as calculating job-summary quantities.
 
template<class T >
const T & getCondition (const std::string &condition_name)
 Access a conditions object for the current event.
 
TDirectory * getHistoDirectory ()
 Access/create a directory in the histogram file for this event processor to create histograms and analysis tuples.
 
void setStorageHint (framework::StorageControl::Hint hint)
 Mark the current event as having the given storage control hint from this module_.
 
void setStorageHint (framework::StorageControl::Hint hint, const std::string &purposeString)
 Mark the current event as having the given storage control hint from this module and the given purpose string.
 
int getLogFrequency () const
 Get the current logging frequency from the process.
 
int getRunNumber () const
 Get the run number from the process.
 
std::string getName () const
 Get the processor name.
 
void createHistograms (const std::vector< framework::config::Parameters > &histos)
 Internal function which is used to create histograms passed from the python configuration @parma histos vector of Parameters that configure histograms to create.
 

Private Attributes

std::string digi_coll_name_
 Digi Collection Name to use as input.
 
std::string digi_pass_name_
 Digi Pass Name to use as input.
 
std::string sim_hit_coll_name_
 simhit collection name
 
std::string sim_hit_pass_name_
 simhit pass name
 
std::string rec_hit_coll_name_
 output hit collection name
 
double mip_energy_
 Energy [MeV] deposited by a MIP.
 
double pe_per_mip_
 PEs per MIP.
 
double clock_cycle_
 Length of clock cycle [ns].
 
double voltage_per_mip_
 Voltage by average MIP.
 
double attlength_
 Strip attenuation length [m].
 
TF1 pulse_func_
 Pulse function.
 
TGraph correction_ampl_
 Correction to the pulse's measured amplitude at the peak.
 
TGraph correction_toa_
 Correction to the measured TOA relative to the peak.
 
double min_ampl_fraction_
 Minimum amplitude fraction to apply amplitude correction.
 
double min_ampl_
 Minimum amplitude to apply TOA correction.
 
int n_ad_cs_
 Depth of ADC buffer.
 
double rate_up_slope_
 Rate of Up Slope in Pulse Shape [1/ns].
 
double time_up_slope_
 Time of Up Slope relative to Pulse Shape Fit [ns].
 
double rate_dn_slope_
 Rate of Down Slope in Pulse Shape [1/ns].
 
double time_dn_slope_
 Time of Down Slope relative to Pulse Shape Fit [ns].
 
double time_peak_
 Time of Peak relative to pulse shape fit [ns].
 

Additional Inherited Members

- Protected Member Functions inherited from framework::EventProcessor
void abortEvent ()
 Abort the event immediately.
 
- Protected Attributes inherited from framework::EventProcessor
HistogramPool histograms_
 helper object for making and filling histograms
 
NtupleManagerntuple_ {NtupleManager::getInstance()}
 Manager for any ntuples.
 
logging::logger the_log_
 The logger for this EventProcessor.
 

Detailed Description

Performs basic HCal reconstruction.

Reconstruction is done from the HcalDigi samples. Some hard-coded parameters are used for position and energy calculation.

Definition at line 43 of file HcalRecProducer.h.

Constructor & Destructor Documentation

◆ HcalRecProducer()

hcal::HcalRecProducer::HcalRecProducer ( const std::string & name,
framework::Process & process )

Constructor.

Definition at line 17 of file HcalRecProducer.cxx.

19 : Producer(name, process) {}
Producer(const std::string &name, Process &process)
Class constructor.
virtual void process(Event &event) final
Processing an event for a Producer is calling produce.

Member Function Documentation

◆ configure()

void hcal::HcalRecProducer::configure ( framework::config::Parameters & ps)
overridevirtual

Grabs configure parameters from the python config file.

Reimplemented from framework::EventProcessor.

Definition at line 21 of file HcalRecProducer.cxx.

21 {
22 // collection names
23 digi_coll_name_ = ps.get<std::string>("digiCollName");
24 digi_pass_name_ = ps.get<std::string>("digiPassName");
25 sim_hit_coll_name_ = ps.get<std::string>("simHitCollName");
26 sim_hit_pass_name_ = ps.get<std::string>("simHitPassName");
27 rec_hit_coll_name_ = ps.get<std::string>("recHitCollName");
28
29 // parameters
30 mip_energy_ = ps.get<double>("mip_energy");
31 pe_per_mip_ = ps.get<double>("pe_per_mip");
32 clock_cycle_ = ps.get<double>("clock_cycle");
33 voltage_per_mip_ = ps.get<double>("voltage_per_mip");
34 attlength_ = ps.get<double>("attenuationLength");
35 n_ad_cs_ = ps.get<int>("nADCs");
36
37 // configuring corrections graphs derived on the fly
38 // TODO: maybe we should save these as a graph instead?
39 rate_up_slope_ = ps.get<double>("rateUpSlope");
40 time_up_slope_ = ps.get<double>("timeUpSlope");
41 rate_dn_slope_ = ps.get<double>("rateDnSlope");
42 time_dn_slope_ = ps.get<double>("timeDnSlope");
43 time_peak_ = ps.get<double>("timePeak");
44 pulse_func_ = TF1(
45 "pulseFunc",
46 "[0]*((1.0+exp([1]*(-[2]+[3])))*(1.0+exp([5]*(-[6]+[3]))))/"
47 "((1.0+exp([1]*(x-[2]+[3]-[4])))*(1.0+exp([5]*(x-[6]+[3]-[4]))))",
48 (double)n_ad_cs_ * clock_cycle_ * -1, (double)n_ad_cs_ * clock_cycle_);
49 pulse_func_.FixParameter(1, rate_up_slope_);
50 pulse_func_.FixParameter(2, time_up_slope_);
51 pulse_func_.FixParameter(3, time_peak_);
52 pulse_func_.FixParameter(5, rate_dn_slope_);
53 pulse_func_.FixParameter(6, time_dn_slope_);
54 pulse_func_.FixParameter(4, 0);
55 pulse_func_.FixParameter(0, 1);
56
57 // build amplitude correction (Ampl[t-1]/Ampl[t]) with pulse-shape
58 int n = 0;
59 for (double t = -clock_cycle_; t < clock_cycle_; t += 0.01) {
60 double ampl_t = pulse_func_.Eval(t);
61 double ampl_tm1 = pulse_func_.Eval(t - clock_cycle_);
62 if (ampl_tm1 > ampl_t) continue;
63 correction_ampl_.SetPoint(n, ampl_tm1 / ampl_t, ampl_t);
64 if (n == 0) min_ampl_fraction_ = ampl_tm1 / ampl_t;
65 n++;
66 }
67
68 // build TOA timewalk correction with pulse-shape
69 double toa_threshold = ps.get<double>("avgToaThreshold");
70 double gain = ps.get<double>("avgGain");
71 double pedestal = ps.get<double>("avgPedestal");
72 n = 0;
73 for (double ampl = toa_threshold + 0.1; ampl < 10000; ampl += 0.01) {
74 pulse_func_.FixParameter(0, ampl);
75 double ampl_t = gain * pedestal + pulse_func_.Eval(0);
76 double toa = fabs(pulse_func_.GetX(toa_threshold,
77 (double)n_ad_cs_ * clock_cycle_ * -1,
78 (double)n_ad_cs_ * clock_cycle_));
79 correction_toa_.SetPoint(n, ampl_t, toa);
80 if (n == 0) min_ampl_ = ampl_t;
81 n++;
82 }
83 correction_toa_.SetBit(TGraph::kIsSortedX);
84}
const T & get(const std::string &name) const
Retrieve the parameter of the given name.
Definition Parameters.h:78
double min_ampl_
Minimum amplitude to apply TOA correction.
double rate_dn_slope_
Rate of Down Slope in Pulse Shape [1/ns].
int n_ad_cs_
Depth of ADC buffer.
double time_dn_slope_
Time of Down Slope relative to Pulse Shape Fit [ns].
double clock_cycle_
Length of clock cycle [ns].
double voltage_per_mip_
Voltage by average MIP.
std::string rec_hit_coll_name_
output hit collection name
double time_peak_
Time of Peak relative to pulse shape fit [ns].
TGraph correction_toa_
Correction to the measured TOA relative to the peak.
std::string sim_hit_coll_name_
simhit collection name
double rate_up_slope_
Rate of Up Slope in Pulse Shape [1/ns].
double mip_energy_
Energy [MeV] deposited by a MIP.
std::string digi_pass_name_
Digi Pass Name to use as input.
double attlength_
Strip attenuation length [m].
TGraph correction_ampl_
Correction to the pulse's measured amplitude at the peak.
std::string digi_coll_name_
Digi Collection Name to use as input.
double time_up_slope_
Time of Up Slope relative to Pulse Shape Fit [ns].
TF1 pulse_func_
Pulse function.
double pe_per_mip_
PEs per MIP.
std::string sim_hit_pass_name_
simhit pass name
double min_ampl_fraction_
Minimum amplitude fraction to apply amplitude correction.

References attlength_, clock_cycle_, correction_ampl_, correction_toa_, digi_coll_name_, digi_pass_name_, framework::config::Parameters::get(), min_ampl_, min_ampl_fraction_, mip_energy_, n_ad_cs_, pe_per_mip_, pulse_func_, rate_dn_slope_, rate_up_slope_, rec_hit_coll_name_, sim_hit_coll_name_, sim_hit_pass_name_, time_dn_slope_, time_peak_, time_up_slope_, and voltage_per_mip_.

◆ getTOA()

double hcal::HcalRecProducer::getTOA ( const ldmx::HgcrocDigiCollection::HgcrocDigi digi,
double pedestal,
unsigned int iSOI ) const

Gets Time of Arrival with respect to the SOI.

Definition at line 86 of file HcalRecProducer.cxx.

88 {
89 // get toa relative to the startBX
90 double toa_rel_start_bx(0.), max_meas{0.};
91 int toa_sample(0), max_sample(0), i_adc(0);
92 for (int i_sample{0}; i_sample < digi.size(); i_sample++) {
93 auto sample{digi.at(i_sample)};
94 if (sample.toa() > 0) {
95 toa_rel_start_bx = sample.toa() * (clock_cycle_ / 1024); // ns
96 // find in which ADC sample the TOA was taken
97 toa_sample = i_adc;
98 }
99 if ((sample.adcT() - pedestal) > max_meas) {
100 max_meas = (sample.adcT() - pedestal);
101 max_sample = i_adc;
102 }
103 i_adc++;
104 }
105
106 // time w.r.t to the peak
107 double toa = (max_sample - toa_sample) * clock_cycle_ - toa_rel_start_bx;
108
109 // time w.r.t to the SOI
110 toa += ((int)iSOI - max_sample) * clock_cycle_;
111
112 return toa;
113}
HgcrocDigiCollection::Sample at(unsigned int i_sample) const
get the sample at a specific index in the digi

References ldmx::HgcrocDigiCollection::HgcrocDigi::at(), and clock_cycle_.

Referenced by produce().

◆ produce()

void hcal::HcalRecProducer::produce ( framework::Event & event)
overridevirtual

Produce HcalHits and put them into the event bus using the HcalDigis as input.

This function unfolds the digi samples taken by the HGC ROC and reconstructs their energy using knowledge of how the chip operates and the position using HcalGeometry.

Simple calculation of sampling fraction: Thickness per layer_: scintillator (0.2cm) + steel (0.25cm) Radiation length and nuclear interaction length: scintillator: X0 = 41.31cm, Lambda = 77.07cm https://pdg.lbl.gov/2017/AtomicNuclearProperties/HTML/polystyrene.html steel X0 = 1.757cm, Lambda = 16.77cm https://pdg.lbl.gov/2012/AtomicNuclearProperties/HTML_PAGES/026.html Prob of EM interaction (e.g. pi0): thickness/X0*100 = (0.2/41.31)/ ((0.2/41.31)

  • (0.25/1.757)) ~ 3.3% Prob of Had interaction (e.g. pi+/pi-): = (0.2/77.07)/ ((0.2/77.07) + (0.25/16.77)) ~ 15% Then e.g. for neutron assuming 1/3 pi0 and 2/3 pi+/- composition: sampling fraction ~ (1/3)*3.3.% + (2/3)*15% ~ 11% energy of neutron = energy_deposited / 0.11;

    NOTE: For now, sampling fraction is not applied.

Implements framework::Producer.

Definition at line 115 of file HcalRecProducer.cxx.

115 {
116 // get the Hcal Geometry
117 const auto& hcal_geometry = getCondition<ldmx::HcalGeometry>(
119
120 // get the reconstruction parameters
121 const auto& the_conditions{
123
124 std::vector<ldmx::HcalHit> hcal_rec_hits;
125 auto hcal_digis = event.getObject<ldmx::HgcrocDigiCollection>(
127 int num_digi_hits = hcal_digis.getNumDigis();
128
129 // get sample of interest index
130 unsigned int i_soi = hcal_digis.getSampleOfInterestIndex();
131
132 // loop through digis
133 int i_digi = 0;
134 while (i_digi < num_digi_hits) {
135 auto digi_posend = hcal_digis.getDigi(i_digi);
136
137 // ID from first digi sample (which should be in positive end)
138 ldmx::HcalDigiID id_posend(digi_posend.id());
139 ldmx::HcalID id(id_posend.section(), id_posend.layer(), id_posend.strip());
140
141 // position from ID
142 auto position = hcal_geometry.getStripCenterPosition(id);
143 double half_total_width =
144 hcal_geometry.getHalfTotalWidth(id.section(), id.layer());
145 double ecal_dx = hcal_geometry.getEcalDx();
146 double ecal_dy = hcal_geometry.getEcalDy();
147
148 // compute distance to the end of the bar
149 // for back Hcal, we take the half of the bar
150 // for side Hcal, we take the length of the bar (2*half-width)-Ecal_dxy as
151 // an approximation
152 float distance_posend, distance_negend, distance_ecal;
153 if (id.section() == ldmx::HcalID::HcalSection::BACK) {
154 distance_posend = half_total_width;
155 distance_negend = half_total_width;
156 } else {
157 if ((id.section() == ldmx::HcalID::HcalSection::TOP) ||
158 (id.section() == ldmx::HcalID::HcalSection::BOTTOM))
159 distance_ecal = ecal_dx;
160 else
161 distance_ecal = ecal_dy;
162 distance_posend = 2 * half_total_width - distance_ecal / 2.;
163 distance_negend = distance_ecal / 2.;
164 }
165
166 // get the estimated voltage and time from digi samples
167 double voltage(0.);
168 double voltage_min(0.);
169 double hit_time(0.);
170
171 double ampl_t(0.);
172 double ampl_t_posend(0.), ampl_tm1_posend(0.);
173 double ampl_t_negend(0.), ampl_tm1_negend(0.);
174
175 // Check if the bar is oriented in X or Y
176 const auto orientation{hcal_geometry.getScintillatorOrientation(id)};
177 int orientation_int = static_cast<int>(orientation);
178
179 // double readout
180 if (id.section() == ldmx::HcalID::HcalSection::BACK) {
181 auto digi_negend = hcal_digis.getDigi(i_digi + 1);
182 ldmx::HcalDigiID id_negend(digi_negend.id());
183
184 double voltage_posend, voltage_negend;
185 if (digi_posend.isTOT()) {
186 voltage_posend =
187 (digi_posend.tot() - the_conditions.totCalib(id_posend, 0)) *
188 the_conditions.totCalib(id_posend, 1);
189 voltage_negend =
190 (digi_negend.tot() - the_conditions.totCalib(id_negend, 0)) *
191 the_conditions.totCalib(id_negend, 1);
192 } else {
193 ampl_t_posend =
194 digi_posend.soi().adcT() - the_conditions.adcPedestal(id_posend);
195 ampl_tm1_posend =
196 digi_posend.soi().adcTm1() - the_conditions.adcPedestal(id_posend);
197 ampl_t_negend =
198 digi_negend.soi().adcT() - the_conditions.adcPedestal(id_negend);
199 ampl_tm1_negend =
200 digi_negend.soi().adcTm1() - the_conditions.adcPedestal(id_negend);
201
202 // correct amplitude (amplitude fractions from both ends need to be
203 // above the boundary of the correction)
204 if (ampl_tm1_posend / ampl_t_posend > min_ampl_fraction_ &&
205 ampl_tm1_negend / ampl_t_negend > min_ampl_fraction_) {
206 ampl_t_posend *=
207 correction_ampl_.Eval(ampl_tm1_posend / ampl_t_posend);
208 ampl_t_negend *=
209 correction_ampl_.Eval(ampl_tm1_negend / ampl_t_negend);
210 }
211
212 // set voltage
213 voltage_posend = ampl_t_posend * the_conditions.adcGain(id_posend, 0);
214 voltage_negend = ampl_t_negend * the_conditions.adcGain(id_negend, 0);
215 }
216
217 // get TOA
218 double toa_posend =
219 getTOA(digi_posend, the_conditions.adcPedestal(id_posend), i_soi);
220 double toa_negend =
221 getTOA(digi_negend, the_conditions.adcPedestal(id_negend), i_soi);
222
223 // get sign of position along the bar
224 int position_bar_sign = (toa_posend - toa_negend) > 0 ? 1 : -1;
225
226 // correct TOA
227 // amplitudes from both ends need to be above the boundary of the
228 // correction otherwise, one TOA gets corrected and the other does not,
229 // which results in a large TOA difference and an out-of-bounds position
230 if (ampl_t_posend > min_ampl_ && ampl_t_negend > min_ampl_) {
231 toa_posend = correction_toa_.Eval(ampl_t_posend) - toa_posend;
232 toa_negend = correction_toa_.Eval(ampl_t_negend) - toa_negend;
233 }
234
235 // get x(y) coordinate from TOA measurement = (dt*v/2)
236 // if time_posend < time_negend: position is positive
237 // velocity of light in polystyrene, n = 1.6 = c/v
238 double v = 299.792 / 1.6;
239 double position_bar =
240 position_bar_sign * fabs(toa_posend - toa_negend) * v / 2;
241
242 // reverse voltage attenuation
243 // if position along the bar is positive, then the positive end will have
244 // less attenuation than the negative end
245 // NOTE: For now, reverse attenuation is not applied to the energy
246 // deposited since both ends of the bar are summed.
247 double att_posend =
248 exp(-1. * ((distance_posend - position_bar) / 1000.) / attlength_);
249 double att_negend =
250 exp(-1. * ((distance_negend + position_bar) / 1000.) / attlength_);
251
252 // set voltage as the sum of both bars
253 voltage = (voltage_posend + voltage_negend);
254 voltage_min = std::min(voltage_posend, voltage_negend);
255
256 // set amplitude as the average of both bars (reverse attenuated)
257 ampl_t = (ampl_t_posend / att_posend + ampl_t_negend / att_negend) / 2;
258
259 // set position along the bar
260 if (orientation ==
261 ldmx::HcalGeometry::ScintillatorOrientation::horizontal) {
262 position.SetX(position_bar);
263 } else {
264 position.SetY(position_bar);
265 }
266
267 // set hit time
268 // TODO: does this need to revert shift because of propagation of light in
269 // polysterene?
270 hit_time = fabs(toa_posend + toa_negend) / 2; // ns
271
272 i_digi += 2;
273 } // end double readout loop
274 else { // single readout
275
276 double voltage_i;
277 if (digi_posend.isTOT()) {
278 // TOT - number of clock ticks that pulse was over threshold
279 // this is related to the amplitude of the pulse approximately through a
280 // linear drain rate the amplitude of the pulse is related to the energy
281 // deposited
282
283 // convert the time over threshold into a total energy deposited in the
284 // bar (time over threshold [ns] - pedestal) * gain
285
286 voltage_i = (digi_posend.tot() - the_conditions.totCalib(id_posend)) *
287 the_conditions.totCalib(id_posend);
288
289 } else {
290 // ADC mode of readout
291 // ADC - voltage measurement at a specific time of the pulse
292 ampl_t_posend =
293 digi_posend.soi().adcT() - the_conditions.adcPedestal(id_posend);
294 ampl_tm1_posend =
295 digi_posend.soi().adcTm1() - the_conditions.adcPedestal(id_posend);
296 voltage_i = ampl_t_posend * the_conditions.adcGain(id_posend);
297 }
298
299 // reverse voltage attenuation
300 // for now, assume that position along the bar is the half_total_width
301 double distance_end =
302 id_posend.isNegativeEnd() ? distance_negend : distance_posend;
303 double att = exp(-1. * ((distance_end - fabs(half_total_width)) / 1000.) /
304 attlength_);
305
306 // set voltage
307 voltage = voltage_i;
308 voltage_min = voltage_i;
309
310 // set amplitude (reverse attenuated)
311 ampl_t = ampl_t_posend / att;
312
313 // get TOA
314 double toa =
315 getTOA(digi_posend, the_conditions.adcPedestal(id_posend), i_soi);
316
317 // correct TOA
318 toa = correction_toa_.Eval(ampl_t) - toa;
319
320 // set hit time
321 hit_time = toa; // ns
322
323 i_digi++;
324 } // end single readout loop
325
326 double num_mips_equivalent = voltage / voltage_per_mip_;
327 double energy_deposited = num_mips_equivalent * mip_energy_;
328
329 // reconstructed energy in the layer_ (approximate)
330 // TODO: need to incorporate corrections if necessary
347 double reconstructed_energy = energy_deposited;
348
349 int p_es = num_mips_equivalent * pe_per_mip_;
350 int min_p_es = (voltage_min / voltage_per_mip_) * pe_per_mip_;
351
352 // copy over information to rec hit structure in new collection
353 ldmx::HcalHit rec_hit;
354 rec_hit.setID(id.raw());
355 rec_hit.setXPos(position.X());
356 rec_hit.setYPos(position.Y());
357 rec_hit.setZPos(position.Z());
358 rec_hit.setSection(id.section());
359 rec_hit.setStrip(id.strip());
360 rec_hit.setLayer(id.layer());
361 rec_hit.setPE(p_es);
362 rec_hit.setMinPE(min_p_es);
363 rec_hit.setAmplitude((ampl_t / voltage_per_mip_) * mip_energy_);
364 rec_hit.setEnergy(reconstructed_energy);
365 rec_hit.setTime(hit_time);
366 rec_hit.setOrientation(orientation_int);
367 hcal_rec_hits.push_back(rec_hit);
368 }
369
371 // hcal sim hits_ exist ==> label which hits_ are real and which are pure
372 // noise
373 auto hcal_sim_hits{event.getCollection<ldmx::SimCalorimeterHit>(
375 std::set<int> real_hits;
376 for (auto const& sim_hit : hcal_sim_hits) real_hits.insert(sim_hit.getID());
377 for (auto& hit : hcal_rec_hits)
378 hit.setNoise(real_hits.find(hit.getID()) == real_hits.end());
379 }
380
381 // add collection to event bus
382 event.add(rec_hit_coll_name_, hcal_rec_hits);
383}
const T & getCondition(const std::string &condition_name)
Access a conditions object for the current event.
bool exists(const std::string &name, const std::string &passName, bool unique=true) const
Check for the existence of an object or collection with the given name and pass name in the event.
Definition Event.cxx:92
double getTOA(const ldmx::HgcrocDigiCollection::HgcrocDigi digi, double pedestal, unsigned int iSOI) const
Gets Time of Arrival with respect to the SOI.
static const std::string CONDITIONS_NAME
the name of the HcalReconConditions table (must match python registration name)
void setYPos(float ypos)
Set the Y position of the hit [mm].
void setID(int id)
Set the detector ID.
void setZPos(float zpos)
Set the Z position of the hit [mm].
void setXPos(float xpos)
Set the X position of the hit [mm].
void setTime(float time)
Set the time of the hit [ns].
void setAmplitude(float amplitude)
Set the amplitude of the hit, which is proportional to the signal in the calorimeter cell without sam...
void setEnergy(float energy)
Set the calorimetric energy of the hit, corrected for sampling factors [MeV].
Extension of HcalAbstractID providing access to HCal digi information.
Definition HcalDigiID.h:13
static constexpr const char * CONDITIONS_OBJECT_NAME
Conditions object: The name of the python configuration calling this class (Hcal/python/HcalGeometry....
Stores reconstructed hit information from the HCAL.
Definition HcalHit.h:24
void setSection(int section)
Set the section for this hit.
Definition HcalHit.h:166
void setMinPE(float minpe)
Set the minimum number of photoelectrons estimated for this hit.
Definition HcalHit.h:160
void setOrientation(int orientation)
Set if the bar is orientied in X / Y / Z meanig 0 / 1 / 2, respectively.
Definition HcalHit.h:234
void setStrip(int strip)
Set the strip for this hit.
Definition HcalHit.h:178
void setLayer(int layer)
Set the layer for this hit.
Definition HcalHit.h:172
void setPE(float pe)
Set the number of photoelectrons estimated for this hit.
Definition HcalHit.h:153
Implements detector ids for HCal subdetector.
Definition HcalID.h:19
Represents a collection of the digi hits readout by an HGCROC.
unsigned int getNumDigis() const
Get total number of digis.
Stores simulated calorimeter hit information.

References attlength_, hcal::HcalReconConditions::CONDITIONS_NAME, ldmx::HcalGeometry::CONDITIONS_OBJECT_NAME, correction_ampl_, correction_toa_, digi_coll_name_, digi_pass_name_, framework::Event::exists(), framework::EventProcessor::getCondition(), ldmx::HgcrocDigiCollection::getNumDigis(), getTOA(), ldmx::HcalDigiID::isNegativeEnd(), ldmx::HcalDigiID::layer(), min_ampl_, min_ampl_fraction_, mip_energy_, pe_per_mip_, rec_hit_coll_name_, ldmx::HcalDigiID::section(), ldmx::CalorimeterHit::setAmplitude(), ldmx::CalorimeterHit::setEnergy(), ldmx::CalorimeterHit::setID(), ldmx::HcalHit::setLayer(), ldmx::HcalHit::setMinPE(), ldmx::HcalHit::setOrientation(), ldmx::HcalHit::setPE(), ldmx::HcalHit::setSection(), ldmx::HcalHit::setStrip(), ldmx::CalorimeterHit::setTime(), ldmx::CalorimeterHit::setXPos(), ldmx::CalorimeterHit::setYPos(), ldmx::CalorimeterHit::setZPos(), sim_hit_coll_name_, sim_hit_pass_name_, ldmx::HcalDigiID::strip(), and voltage_per_mip_.

Member Data Documentation

◆ attlength_

double hcal::HcalRecProducer::attlength_
private

Strip attenuation length [m].

Definition at line 105 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ clock_cycle_

double hcal::HcalRecProducer::clock_cycle_
private

Length of clock cycle [ns].

Definition at line 99 of file HcalRecProducer.h.

Referenced by configure(), and getTOA().

◆ correction_ampl_

TGraph hcal::HcalRecProducer::correction_ampl_
mutableprivate

Correction to the pulse's measured amplitude at the peak.

The correction is calculated by comparing the amplitude at the sample time (T) over its correct value (1.0) with the ratio between sample T and sample T+25ns.

Definition at line 116 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ correction_toa_

TGraph hcal::HcalRecProducer::correction_toa_
mutableprivate

Correction to the measured TOA relative to the peak.

This corrects for the time-walk effect where the time that the front edge of the pulse crosses the TOA threshold walks higher in time as the pulse's amplitude gets smaller. The correction is calculated by comparing the TOA measured relative to the peak (i.e. the time at which the pulse crosses the TOA threshold) with the amplitude at the sample time (T) over its correct value (1.0).

Definition at line 127 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ digi_coll_name_

std::string hcal::HcalRecProducer::digi_coll_name_
private

Digi Collection Name to use as input.

Definition at line 78 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ digi_pass_name_

std::string hcal::HcalRecProducer::digi_pass_name_
private

Digi Pass Name to use as input.

Definition at line 81 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ min_ampl_

double hcal::HcalRecProducer::min_ampl_
private

Minimum amplitude to apply TOA correction.

Definition at line 133 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ min_ampl_fraction_

double hcal::HcalRecProducer::min_ampl_fraction_
private

Minimum amplitude fraction to apply amplitude correction.

Definition at line 130 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ mip_energy_

double hcal::HcalRecProducer::mip_energy_
private

Energy [MeV] deposited by a MIP.

Definition at line 93 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ n_ad_cs_

int hcal::HcalRecProducer::n_ad_cs_
private

Depth of ADC buffer.

Definition at line 136 of file HcalRecProducer.h.

Referenced by configure().

◆ pe_per_mip_

double hcal::HcalRecProducer::pe_per_mip_
private

PEs per MIP.

Definition at line 96 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ pulse_func_

TF1 hcal::HcalRecProducer::pulse_func_
mutableprivate

Pulse function.

Definition at line 108 of file HcalRecProducer.h.

Referenced by configure().

◆ rate_dn_slope_

double hcal::HcalRecProducer::rate_dn_slope_
private

Rate of Down Slope in Pulse Shape [1/ns].

Definition at line 145 of file HcalRecProducer.h.

Referenced by configure().

◆ rate_up_slope_

double hcal::HcalRecProducer::rate_up_slope_
private

Rate of Up Slope in Pulse Shape [1/ns].

Definition at line 139 of file HcalRecProducer.h.

Referenced by configure().

◆ rec_hit_coll_name_

std::string hcal::HcalRecProducer::rec_hit_coll_name_
private

output hit collection name

Definition at line 90 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ sim_hit_coll_name_

std::string hcal::HcalRecProducer::sim_hit_coll_name_
private

simhit collection name

Definition at line 84 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ sim_hit_pass_name_

std::string hcal::HcalRecProducer::sim_hit_pass_name_
private

simhit pass name

Definition at line 87 of file HcalRecProducer.h.

Referenced by configure(), and produce().

◆ time_dn_slope_

double hcal::HcalRecProducer::time_dn_slope_
private

Time of Down Slope relative to Pulse Shape Fit [ns].

Definition at line 148 of file HcalRecProducer.h.

Referenced by configure().

◆ time_peak_

double hcal::HcalRecProducer::time_peak_
private

Time of Peak relative to pulse shape fit [ns].

Definition at line 151 of file HcalRecProducer.h.

Referenced by configure().

◆ time_up_slope_

double hcal::HcalRecProducer::time_up_slope_
private

Time of Up Slope relative to Pulse Shape Fit [ns].

Definition at line 142 of file HcalRecProducer.h.

Referenced by configure().

◆ voltage_per_mip_

double hcal::HcalRecProducer::voltage_per_mip_
private

Voltage by average MIP.

Definition at line 102 of file HcalRecProducer.h.

Referenced by configure(), and produce().


The documentation for this class was generated from the following files: