LDMX Software
TrigPrimResolutionAnalyzer.cxx
1#include "DetDescr/EcalID.h"
4#include "Ecal/Event/EcalHit.h"
7#include "Recon/Event/HgcrocTrigDigi.h"
8
9namespace ldmx::ecal {
18 std::string trig_collection_name_ = "ecalTrigDigis";
19 std::string trig_pass_name_ = "";
20 std::string hit_collection_name_ = "EcalRecHits";
21 std::string hit_pass_name_ = "";
22 double total_trigger_mean_ = 876.28120;
23 double total_ampl_mean_ = 48.805244;
24 double nominal_{1.0};
25 double secondOrderEnergyCorrection_ = 4000. / 3940.5;
26 double mip_si_energy_ = 0.13;
27 std::vector<double> layerWeights_ = {
28 2.312, 4.312, 6.522, 7.490, 8.595, 10.253, 10.915, 10.915, 10.915,
29 10.915, 10.915, 10.915, 10.915, 10.915, 10.915, 10.915, 10.915, 10.915,
30 10.915, 10.915, 10.915, 10.915, 10.915, 14.783, 18.539, 18.539, 18.539,
31 18.539, 18.539, 18.539, 18.539, 18.539, 18.539, 9.938};
32
33 public:
34 TrigPrimResolutionAnalyzer(const std::string& name,
35 framework::Process& process)
36 : framework::Analyzer(name, process) {}
37 virtual ~TrigPrimResolutionAnalyzer() = default;
38 void configure(framework::config::Parameters& parameters) final;
39 void onProcessStart() final;
40 void analyze(const framework::Event& event) final;
41
47 double calculate_energy(int layer, double amplitude) {
48 return (1 + layerWeights_[layer] / mip_si_energy_) * amplitude *
49 secondOrderEnergyCorrection_;
50 }
51};
52
62#define optional_update(variable) \
63 variable##_ = parameters.getParameter(#variable, variable##_)
64
67 optional_update(trig_collection_name);
68 optional_update(trig_pass_name);
69 optional_update(hit_collection_name);
70 optional_update(hit_pass_name);
71 optional_update(total_trigger_mean);
72 optional_update(total_ampl_mean);
73 optional_update(secondOrderEnergyCorrection);
74 optional_update(mip_si_energy);
75 optional_update(layerWeights);
76
77 // nominal scale separation between trigger and precision would be
78 // determined experimentally by comparing their values
79 // nominal_ = total_trigger_mean_ / total_ampl_mean_;
80 // this has already been done so we just hardcode in the value
81 // determined by Steven Metallo in 2024, but it can be updated
82 // to use the ratio of the totals like above
83 nominal_ = 18.14;
84}
85
87 // variable bins
88 std::vector<double> binsx = {0., 10., 20., 30., 40., 50., 60.,
89 70., 80., 90., 100., 110., 120., 130.,
90 140., 150., 300., 575., 1000.};
91 std::vector<double> binsy = {
92 0.6, 0.608, 0.616, 0.624, 0.632, 0.64, 0.648, 0.656, 0.664, 0.672,
93 0.68, 0.688, 0.696, 0.704, 0.712, 0.72, 0.728, 0.736, 0.744, 0.752,
94 0.76, 0.768, 0.776, 0.784, 0.792, 0.8, 0.808, 0.816, 0.824, 0.832,
95 0.84, 0.848, 0.856, 0.864, 0.872, 0.88, 0.888, 0.896, 0.904, 0.912,
96 0.92, 0.928, 0.936, 0.944, 0.952, 0.96, 0.968, 0.976, 0.984, 0.992,
97 1., 1.008, 1.016, 1.024, 1.032, 1.04, 1.048, 1.056, 1.064, 1.072,
98 1.08, 1.088, 1.096, 1.104, 1.112, 1.12, 1.128, 1.136, 1.144, 1.152,
99 1.16, 1.168, 1.176, 1.184, 1.192, 1.2, 1.208, 1.216, 1.224, 1.232,
100 1.24, 1.248, 1.256, 1.264, 1.272, 1.28, 1.288, 1.296, 1.304, 1.312,
101 1.32, 1.328, 1.336, 1.344, 1.352, 1.36, 1.368, 1.376, 1.384, 1.392,
102 1.4};
103 std::vector<double> binsx_fin = {0., 10., 20., 30., 40., 50., 60., 70.,
104 80., 90., 100., 150., 300., 575., 1000.};
105
106 // initialize processing by making histograms and such
107 // first, we get the directory for this processor in the histogram file
109 // then we can create histograms within it
111 "total_trig_energy" /* name - as written in output ROOT file */,
112 "Total of all Trig Digis [MeV]" /* xlabel - axis label of histogram */,
113 100 /* number of bins */, 0 /* minimum value */, 8000 /* maximum value */
114 );
115 histograms_.create("total_ampl_energy",
116 "Total of Precision Hit Amplitudes [MeV]", 100, 0, 8000);
117 histograms_.create("total_trig_v_total_ampl", "Total of all Trig Digis [MeV]",
118 1000, 0, 8000, "Total of Precision Hit Amplitudes [MeV]",
119 100, 0, 8000);
120 histograms_.create("trig_ampl_nominal", "Total trig / total ampl", 100, 0.85,
121 1.15);
122 histograms_.create("module_id", "Module id", 7, 0, 7);
123 histograms_.create("layer_id", "Layer id", 34, 0, 34);
124 histograms_.create("trig_sum_per_module", "module trigger sum [MeV]", 100, 0,
125 2000);
126 histograms_.create("ampl_sum_per_module", "module precision ampl sum [MeV]",
127 100, 0, 2000);
128 histograms_.create("trig_v_ampl_module", "Module-sum full readout [MeV]", 100,
129 0, 2000, "Module-sum trigger [MeV]", 100, 0, 2000);
130 histograms_.create("trig_sum_per_layer", "layer trigger sum [MeV]", 100, 0,
131 2000);
132 histograms_.create("ampl_sum_per_layer", "layer precision ampl sum [MeV]",
133 100, 0, 2000);
134 histograms_.create("trig_v_ampl_layer", "Layer trigger total [MeV]", 100, 0,
135 2500, "Layer ampl total [MeV]", 100, 0, 2500);
136 histograms_.create("trig_ampl_v_ampl", "module precision ampl sum [MeV]", 100,
137 0, 1000, "module trigger / module precision ampl", 100,
138 0.4, 1.2);
139 histograms_.create("trig_ampl_v_ampl_binadjust",
140 "module precision trig sum [MeV]", 100, 0, 2000,
141 "module trigger / module precision ampl", 100, 0.4, 1.2);
142 histograms_.create("trig_ampl_v_ampl_layer", "layer precision ampl sum [MeV]",
143 100, 0, 1000, "layer trigger / layer precision ampl", 100,
144 0.4, 1.2);
145 histograms_.create("trig_ampl_v_ampl_total", "total precision ampl sum [MeV]",
146 100, 0, 8000, "total trigger / total precision ampl", 100,
147 0.9, 1.1);
148 histograms_.create("trig_ampl_v_ampl_total_first20", "Full readout sum [MeV]",
149 100, 0, 6000, "Trigger / Full readout", 100, 0.95, 1.05);
150 histograms_.create("trig_group", "trigger group total precision hits [MeV]",
151 100, 0, 2000);
152 histograms_.create("trig_group_trigger", "trigger group trigger [MeV]", 100,
153 0, 8000);
154 histograms_.create("trig_group_v_trig",
155 "trigger group total precision hits [MeV]", 100, 0, 2000,
156 "trigger group trigger [MeV]", 100, 0, 8000);
157 histograms_.create("trig_group_ampl_v_ampl",
158 "Trigger group full readout [MeV]", 100, 0, 1000,
159 "Trigger group ratio / nominal", 200, 0.6, 1.4);
160 histograms_.create("trig_group_ampl_v_ampl_varbin",
161 "Trigger group full readout [MeV]", binsx,
162 "Trigger group ratio / nominal", binsy);
163 histograms_.create("trig_group_ampl_unweight",
164 "unweighted trigger group total precision hits [MeV]", 100,
165 0, 20,
166 "trigger group trigger / unweighted trigger group total "
167 "prec hits / nominal",
168 200, 0.6, 1.4);
169 histograms_.create("trig_group_ampl_v_ampl_varbin_fin",
170 "Trigger group full readout [MeV]", binsx_fin,
171 "Trigger group ratio / nominal", binsy);
172}
173
182 unsigned int layer_;
183 unsigned int module_;
185 layer_ = tid.getLayerID();
186 module_ = tid.getModuleID();
187 }
188 UniqueModule(EcalID eid) {
189 layer_ = eid.getLayerID();
190 module_ = eid.getModuleID();
191 }
192};
193
197bool operator<(const UniqueModule& lhs, const UniqueModule& rhs) {
198 if (lhs.layer_ < rhs.layer_) return true;
199 if (lhs.layer_ > rhs.layer_) return false;
200 // lhs.layer_ == rhs.layer_
201 return (lhs.module_ < rhs.module_);
202}
203
215float get_estimate(const HgcrocTrigDigi& trig) {
216 uint32_t prim{trig.linearPrimitive()};
217 if (prim < 15) {
218 return (static_cast<float>(prim) + 0.5);
219 }
220 return static_cast<float>(prim);
221}
222
224 // called once on each event, get objects and fill histograms
225 const auto& trigs = event.getCollection<ldmx::HgcrocTrigDigi>(
226 trig_collection_name_, trig_pass_name_);
227 // trigs are a std::vector<ldmx::HgcrocTrigDigi>
228 const auto& hits =
229 event.getCollection<ldmx::EcalHit>(hit_collection_name_, hit_pass_name_);
230 // hits are a std::vector<ldmx::EcalHit>
231 const ::ecal::EcalTriggerGeometry& geom =
232 getCondition<::ecal::EcalTriggerGeometry>(
233 ::ecal::EcalTriggerGeometry::CONDITIONS_OBJECT_NAME);
234
235 std::map<UniqueModule, std::pair<int, double>> module_sums;
236 int trig_prim_total{0};
237 int trig_prim_total_first20{0};
238 for (const auto& trig : trigs) {
239 EcalTriggerID tid{trig.getId()};
240 UniqueModule mod{tid};
241 double trig_ampl = get_estimate(trig);
242 double trig_energy = calculate_energy(mod.layer_, trig_ampl) / nominal_;
243
245 if (module_sums.find(mod) == module_sums.end()) {
246 module_sums[mod] = {0, 0.0};
247 }
248
249 module_sums[mod].first += trig_energy;
250 trig_prim_total += trig_energy;
251 if (mod.layer_ <= 20) {
252 trig_prim_total_first20 += trig_energy;
253 }
254
255 // calculate the sum of precision hits for the 9 cells in this
256 // trigger grouping
257 double trig_group_prec_total{0};
258 double trig_group_prec_total_unweight{0};
259 for (auto& prec_id : geom.contentsOfTriggerCell(tid)) {
260 for (const auto& hit : hits) {
261 if (prec_id == hit.getID()) {
262 trig_group_prec_total +=
263 calculate_energy(mod.layer_, hit.getAmplitude());
264 trig_group_prec_total_unweight += hit.getAmplitude();
265 }
266 }
267 }
268
269 // have trig_group_prec_total which is the sum of the precision hits
270 // in that trigger group and trig_ampl is the sum
271 // as reported by the trigger itself
272 double ratio_energy = trig_energy / trig_group_prec_total,
273 ratio_ampl = trig_ampl / trig_group_prec_total_unweight / nominal_;
274 histograms_.fill("trig_group", trig_group_prec_total);
275 histograms_.fill("trig_group_trigger", trig_energy * nominal_);
276 histograms_.fill("trig_group_v_trig", trig_group_prec_total,
277 trig_energy * nominal_);
278 histograms_.fill("trig_group_ampl_v_ampl", trig_group_prec_total,
279 ratio_energy);
280 histograms_.fill("trig_group_ampl_v_ampl_varbin", trig_group_prec_total,
281 ratio_energy);
282 histograms_.fill("trig_group_ampl_v_ampl_varbin_fin", trig_group_prec_total,
283 ratio_energy);
284 histograms_.fill("trig_group_ampl_unweight", trig_group_prec_total_unweight,
285 ratio_ampl);
286 }
287
288 double prec_ampl_total{0.};
289 double prec_ampl_total_first20{0.};
290 for (const auto& hit : hits) {
291 EcalID id{static_cast<unsigned int>(hit.getID())};
292 UniqueModule mod{id};
293 if (module_sums.find(mod) == module_sums.end()) {
294 module_sums[mod] = {0, 0.0};
295 }
296 double prec_energy = calculate_energy(mod.layer_, hit.getAmplitude());
297 module_sums[mod].second += prec_energy;
298 prec_ampl_total += prec_energy;
299 if (mod.layer_ <= 20) {
300 prec_ampl_total_first20 += prec_energy;
301 }
302 }
303
304 std::map<int, std::pair<int, double>> layer_sums;
305 for (const auto& [unique_module, sum_pair] : module_sums) {
306 if (layer_sums.find(unique_module.layer_) == layer_sums.end()) {
307 // layer is not found in layer_sums map so start the sum at 0
308 layer_sums[unique_module.layer_] = {0, 0.0};
309 }
310 // add this module total to running total for the layer
311 layer_sums[unique_module.layer_].first += sum_pair.first;
312 layer_sums[unique_module.layer_].second += sum_pair.second;
313 }
314
315 int layer_id_tmp = {0};
316 int module_id_tmp = {0};
317 for (const auto& [mod_id, sum_pair] : module_sums) {
318 /* std::cout << " layer id " << mod_id.layer_ << " mod id " <<
319 * mod_id.module_ << std::endl; */
320 layer_id_tmp = mod_id.layer_;
321 module_id_tmp = mod_id.module_;
322 histograms_.fill("layer_id", layer_id_tmp);
323 histograms_.fill("module_id", module_id_tmp);
324 histograms_.fill("trig_sum_per_module", sum_pair.first);
325 histograms_.fill("ampl_sum_per_module", sum_pair.second);
326 histograms_.fill("trig_v_ampl_module", sum_pair.second, sum_pair.first);
327 histograms_.fill("trig_ampl_v_ampl", sum_pair.second,
328 sum_pair.first / sum_pair.second);
329 histograms_.fill("trig_ampl_v_ampl_binadjust", sum_pair.second,
330 sum_pair.first / sum_pair.second);
331 }
332
333 for (const auto& [layer, layer_sum_pair] : layer_sums) {
334 histograms_.fill("trig_sum_per_layer", layer_sum_pair.first);
335 histograms_.fill("ampl_sum_per_layer", layer_sum_pair.second);
336 histograms_.fill("trig_v_ampl_layer", layer_sum_pair.first,
337 layer_sum_pair.second);
338 histograms_.fill("trig_ampl_v_ampl_layer", layer_sum_pair.second,
339 layer_sum_pair.first / layer_sum_pair.second);
340 }
341
342 histograms_.fill("total_trig_energy", trig_prim_total);
343 histograms_.fill("total_ampl_energy", prec_ampl_total);
344 histograms_.fill("total_trig_v_total_ampl", trig_prim_total, prec_ampl_total);
345 histograms_.fill("trig_ampl_nominal", trig_prim_total / prec_ampl_total);
346 histograms_.fill("trig_ampl_v_ampl_total", prec_ampl_total,
347 trig_prim_total / prec_ampl_total);
348 histograms_.fill("trig_ampl_v_ampl_total_first20", prec_ampl_total_first20,
349 trig_prim_total_first20 / prec_ampl_total_first20);
350}
351
352} // namespace ldmx::ecal
353
354DECLARE_ANALYZER_NS(ldmx::ecal, TrigPrimResolutionAnalyzer);
Class that defines an ECal detector ID with a cell number.
Class that defines the relationship between precision cells and trigger cells and provides geometry i...
Class that defines an ECal trigger cell detector ID.
Base classes for all user event processing components to extend.
#define DECLARE_ANALYZER_NS(NS, CLASS)
Macro which allows the framework to construct an analyzer given its name during configuration.
Class that represents a digitized hit in a calorimeter cell readout by an HGCROC.
Base class for a module which does not produce a data product.
TDirectory * getHistoDirectory()
Access/create a directory in the histogram file for this event processor to create histograms and ana...
HistogramHelper histograms_
Interface class for making and filling histograms.
Implements an event buffer system for storing event data.
Definition Event.h:41
void fill(const std::string &name, const double &val)
Fill a 1D histogram.
Definition Histograms.h:166
void create(const std::string &name, const std::string &xLabel, const double &bins, const double &xmin, const double &xmax)
Create a ROOT 1D histogram of type TH1F and pool it for later use.
Class which represents the process under execution.
Definition Process.h:36
Class encapsulating parameters for configuring a processor.
Definition Parameters.h:27
Stores reconstructed hit information from the ECAL.
Definition EcalHit.h:19
Extension of DetectorID providing access to ECal layers and cell numbers in a hex grid.
Definition EcalID.h:20
int getLayerID() const
Get the value of the layer field from the ID.
Definition EcalID.h:105
int getModuleID() const
Get the value of the module field from the ID.
Definition EcalID.h:93
Extension of DetectorID providing access to ECal trigger cell information.
int getLayerID() const
Get the value of the layer field from the ID.
int getModuleID() const
Get the value of the module field from the ID.
Contains the trigger output for a single trigger hgcroc channel.
uint32_t linearPrimitive() const
Get the linearized value of the trigger primitive.
uint32_t getId() const
Get the id of the digi.
Analyze the trigger primitives by comparing them to the precision hits.
void configure(framework::config::Parameters &parameters) final
Callback for the EventProcessor to configure itself from the given set of parameters.
void onProcessStart() final
Callback for the EventProcessor to take any necessary action when the processing of events starts,...
double calculate_energy(int layer, double amplitude)
Calculate the energy deposited estimate from a hit's amplitude.
void analyze(const framework::Event &event) final
Process the event and make histograms or summaries.
structure holding data uniquely identifying a specific module in the ECal