2#include "Tools/ONNXRuntime.h"
7#if ORT_API_VERSION == 2
11std::string get_input_name(std::unique_ptr<Session>& s,
size_t i,
12 AllocatorWithDefaultOptions a) {
13 return s->GetInputName(i, a);
15std::string get_output_name(std::unique_ptr<Session>& s,
size_t i,
16 AllocatorWithDefaultOptions a) {
17 return s->GetOutputName(i, a);
22std::string getInputName(std::unique_ptr<Session>& s,
size_t i,
23 AllocatorWithDefaultOptions a) {
24 return s->GetInputNameAllocated(i, a).get();
26std::string getOutputName(std::unique_ptr<Session>& s,
size_t i,
27 AllocatorWithDefaultOptions a) {
28 return s->GetOutputNameAllocated(i, a).get();
30#if ORT_API_VERSION != 15
32 "Untested ONNX version, not certain of API, assuming API version 15.")
36Env ONNXRuntime::env(ORT_LOGGING_LEVEL_WARNING,
"");
39 const SessionOptions* session_options) {
41 if (session_options) {
42 session_.reset(
new Session(env, model_path.c_str(), *session_options));
44 SessionOptions sess_opts;
45 sess_opts.SetIntraOpNumThreads(1);
46 session_.reset(
new Session(env, model_path.c_str(), sess_opts));
48 AllocatorWithDefaultOptions allocator;
51 size_t num_input_nodes = session_->GetInputCount();
52 input_node_strings_.resize(num_input_nodes);
53 input_node_names_.resize(num_input_nodes);
54 input_node_dims_.clear();
56 for (
size_t i = 0; i < num_input_nodes; i++) {
58 std::string input_name(getInputName(session_, i, allocator));
59 input_node_strings_[i] = input_name;
60 input_node_names_[i] = input_node_strings_[i].c_str();
63 auto type_info = session_->GetInputTypeInfo(i);
64 auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
65 size_t num_dims = tensor_info.GetDimensionsCount();
66 input_node_dims_[input_name].resize(num_dims);
67 const auto input_shape = tensor_info.GetShape();
68 std::copy(input_shape.begin(), input_shape.end(),
69 input_node_dims_[input_name].begin());
72 input_node_dims_[input_name].at(0) = 1;
75 size_t num_output_nodes = session_->GetOutputCount();
76 output_node_strings_.resize(num_output_nodes);
77 output_node_names_.resize(num_output_nodes);
78 output_node_dims_.clear();
80 for (
size_t i = 0; i < num_output_nodes; i++) {
82 std::string output_name(getOutputName(session_, i, allocator));
83 output_node_strings_[i] = output_name;
84 output_node_names_[i] = output_node_strings_[i].c_str();
87 auto type_info = session_->GetOutputTypeInfo(i);
88 auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
89 size_t num_dims = tensor_info.GetDimensionsCount();
90 output_node_dims_[output_name].resize(num_dims);
91 const auto output_shape = tensor_info.GetShape();
92 std::copy(output_shape.begin(), output_shape.end(),
93 output_node_dims_[output_name].begin());
96 output_node_dims_[output_name].at(0) = -1;
101 FloatArrays& input_values,
102 const std::vector<std::string>& output_names,
103 int64_t batch_size)
const {
104 assert(input_names.size() == input_values.size());
105 assert(batch_size > 0);
108 std::vector<Value> input_tensors;
110 MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
111 for (
const auto& name : input_node_strings_) {
112 auto iter = std::find(input_names.begin(), input_names.end(), name);
113 if (iter == input_names.end()) {
114 throw std::runtime_error(
"Input '" + name +
"' is not provided!");
116 auto value = input_values.begin() + (iter - input_names.begin());
117 auto input_dims = input_node_dims_.at(name);
118 input_dims[0] = batch_size;
119 auto expected_len = std::accumulate(input_dims.begin(), input_dims.end(), 1,
120 std::multiplies<int64_t>());
121 if (expected_len != (int64_t)value->size()) {
122 throw std::runtime_error(
"Input array '" + name +
123 "' has a wrong size of " +
124 std::to_string(value->size()) +
", expected " +
125 std::to_string(expected_len));
128 Value::CreateTensor<float>(memory_info, value->data(), value->size(),
129 input_dims.data(), input_dims.size());
130 assert(input_tensor.IsTensor());
131 input_tensors.emplace_back(std::move(input_tensor));
136 std::vector<const char*> run_output_node_names;
137 if (output_names.empty()) {
138 run_output_node_names = output_node_names_;
140 for (
const auto& name : output_names) {
141 run_output_node_names.push_back(name.c_str());
146 auto output_tensors =
147 session_->Run(RunOptions{
nullptr}, input_node_names_.data(),
148 input_tensors.data(), input_tensors.size(),
149 run_output_node_names.data(), run_output_node_names.size());
153 for (
auto& output_tensor : output_tensors) {
154 assert(output_tensor.IsTensor());
157 auto tensor_info = output_tensor.GetTensorTypeAndShapeInfo();
158 auto length = tensor_info.GetElementCount();
160 auto floatarr = output_tensor.GetTensorMutableData<
float>();
161 outputs.emplace_back(floatarr, floatarr + length);
163 assert(outputs.size() == run_output_node_names.size());
170 return output_node_strings_;
172 throw std::runtime_error(
"ONNXRuntime session is not initialized!");
177 const std::string& output_name)
const {
178 auto iter = output_node_dims_.find(output_name);
179 if (iter == output_node_dims_.end()) {
180 throw std::runtime_error(
"Output name '" + output_name +
"' is invalid!");
const std::vector< int64_t > & getOutputShape(const std::string &output_name) const
Get the shape of a output node.
ONNXRuntime(const std::string &model_path, const ::Ort::SessionOptions *session_options=nullptr)
Class constructor.
FloatArrays run(const std::vector< std::string > &input_names, FloatArrays &input_values, const std::vector< std::string > &output_names={}, int64_t batch_size=1) const
Run model inference and get outputs.
const std::vector< std::string > & getOutputNames() const
Get the names of all the output nodes.