LDMX Software
EcalRecProducer.cxx
Go to the documentation of this file.
1
8
10#include "Ecal/EcalReconConditions.h"
11#include "Ecal/Event/EcalHit.h"
14
15namespace ecal {
16
17EcalRecProducer::EcalRecProducer(const std::string& name,
18 framework::Process& process)
19 : Producer(name, process) {}
20
22 // collection names
23 digi_coll_name_ = ps.get<std::string>("digiCollName");
24 digi_pass_name_ = ps.get<std::string>("digiPassName");
25 sim_hit_coll_name_ = ps.get<std::string>("simHitCollName");
26 sim_hit_pass_name_ = ps.get<std::string>("simHitPassName");
27 rec_hit_coll_name_ = ps.get<std::string>("recHitCollName");
28
29 layer_weights_ = ps.get<std::vector<double>>("layerWeights");
31 ps.get<double>("secondOrderEnergyCorrection");
32
33 mip_si_energy_ = ps.get<double>("mip_si_energy");
34 clock_cycle_ = ps.get<double>("clock_cycle");
35 charge_per_mip_ = ps.get<double>("charge_per_mip");
36}
37
39 // Get the Ecal Geometry
40 const auto& geometry = getCondition<ldmx::EcalGeometry>(
41 ldmx::EcalGeometry::CONDITIONS_OBJECT_NAME);
42
43 // Get the reconstruction parameters
44 EcalReconConditions the_conditions(
47
48 std::vector<ldmx::EcalHit> ecal_rec_hits;
49 auto ecal_digis = event.getObject<ldmx::HgcrocDigiCollection>(
51 // loop through digis
52 for (auto digi : ecal_digis) {
53 // ID from first digi sample
54 // assuming rest of samples have same ID
55 ldmx::EcalID id(digi.id());
56
57 // ID to real space position
58 auto [x_, y_, z_] = geometry.getPosition(id);
59
60 // TOA is the time of arrival with respect to the 25ns clock window
61 // TODO what to do if hit NOT in first clock cycle?
62 double time_rel_clock25 = digi.soi().toa() * (clock_cycle_ / 1024); // ns
63 double hit_time = time_rel_clock25;
64
65 // get the estimated charge deposited from digi samples
66 double charge(0.);
67
68 ldmx_log(trace) << "Recon { "
69 // << "ID: " << id.raw() << ", "
70 << "TOA: " << hit_time << " ns } ";
71 if (digi.isTOT()) {
72 // TOT - number of clock ticks that pulse was over threshold
73 // this is related to the amplitude of the pulse approximately through a
74 // linear drain rate the amplitude of the pulse is related to the energy
75 // deposited
76
77 // convert the time over threshold into a total energy deposited in the
78 // silicon
79 // (time over threshold [ns] - pedestal) * gain
80 charge = (digi.tot() - the_conditions.totPedestal(id)) *
81 the_conditions.totGain(id);
82
83 ldmx_log(trace) << "TOT Mode -> " << digi.tot() << "TDC -> " << charge
84 << " fC";
85 } else {
86 // ADC mode of readout
87 // ADC - voltage measurement at a specific time of the pulse
88 // Pulse Shape:
89 // p[0]/(1.0+exp(p[1](t-p[2]+p[3]-p[4])))/(1.0+exp(p[5]*(t-p[6]+p[3]-p[4])))
90 // p[0] = amplitude to be fit (TBD)
91 // p[1] = -0.345 shape parameter - rate of up slope
92 // p[2] = 70.6547 shape parameter - time of up slope relative to shape
93 // fit p[3] = 77.732 shape parameter - time of peak relative to shape fit
94 // p[4] = peak time to be fit (TBD)
95 // p[5] = 0.140068 shape parameter - rate of down slope
96 // p[6] = 87.7649 shape paramter - time of down slope relative to shape
97 // fit
98 // These measurements can be used to fit the pulse shape if TOT is not
99 // available. For now, we simply take the measurement of the SOI as the
100 // peak amplitude.
101
102 charge = (digi.soi().adcT() - the_conditions.adcPedestal(id)) *
103 the_conditions.adcGain(id);
104
105 ldmx_log(trace) << "ADC Mode -> " << charge << " fC";
106 }
107
119 if (charge < 0) continue;
120
121 double num_mips_equivalent = charge / charge_per_mip_;
122 double energy_deposited_in_si = num_mips_equivalent * mip_si_energy_;
123
124 ldmx_log(trace) << " -> " << num_mips_equivalent << " equiv MIPs -> "
125 << energy_deposited_in_si << " MeV";
126
127 // incorporate layer_ weights
128 double reconstructed_energy =
129 (num_mips_equivalent *
131 id.layer()) // energy lost in non-sensitive layers
132 + energy_deposited_in_si // energy deposited in Si itself
133 ) *
135
136 // copy over information to rec hit structure in new collection
137 ldmx::EcalHit rec_hit;
138 rec_hit.setID(id.raw());
139 rec_hit.setXPos(x_);
140 rec_hit.setYPos(y_);
141 rec_hit.setZPos(z_);
142 rec_hit.setAmplitude(energy_deposited_in_si);
143 rec_hit.setEnergy(reconstructed_energy);
144 rec_hit.setTime(hit_time);
145
146 ecal_rec_hits.push_back(rec_hit);
147 }
148
150 // ecal sim hits_ exist ==> label which hits_ are real and which are pure
151 // noise
152 auto ecal_sim_hits{event.getCollection<ldmx::SimCalorimeterHit>(
154 std::set<int> real_hits;
155 for (auto const& sim_hit : ecal_sim_hits) real_hits.insert(sim_hit.getID());
156 for (auto& hit : ecal_rec_hits)
157 hit.setNoise(real_hits.find(hit.getID()) == real_hits.end());
158 }
159
160 // add collection to event bus
161 event.add(rec_hit_coll_name_, ecal_rec_hits);
162}
163
164} // namespace ecal
165
Class that translates raw positions of ECal module hits into cells in a hexagonal readout.
Class that performs basic ECal digitization.
#define DECLARE_PRODUCER(CLASS)
Macro which allows the framework to construct a producer given its name during configuration.
Class that represents a digitized hit in a calorimeter cell readout by an HGCROC.
Class which stores simulated calorimeter hit information.
Performs basic ECal reconstruction.
double mip_si_energy_
Energy [MeV] deposited by a MIP in Si 0.5mm thick.
std::string sim_hit_coll_name_
simhit collection name
std::vector< double > layer_weights_
Layer Weights to use for this reconstruction.
double second_order_energy_correction_
Second Order Energy Correction to use for this reconstruction.
double charge_per_mip_
Number of electrons generated by average MIP in Si 0.5mm thick.
std::string rec_hit_coll_name_
output hit collection name
EcalRecProducer(const std::string &name, framework::Process &process)
Constructor.
virtual void produce(framework::Event &event)
Produce EcalHits and put them into the event bus using the EcalDigis as input.
std::string digi_pass_name_
Digi Pass Name to use as input.
virtual void configure(framework::config::Parameters &)
Grabs configure parameters from the python config file.
double clock_cycle_
Length of clock cycle [ns].
std::string sim_hit_pass_name_
simhit pass name
std::string digi_coll_name_
Digi Collection Name to use as input.
Class to wrap around an double table of conditions.
double adcPedestal(const ldmx::EcalID &id) const
get the ADC pedestal
double adcGain(const ldmx::EcalID &id) const
get the ADC gain
double totPedestal(const ldmx::EcalID &id) const
get the TOT pedestal
static const std::string CONDITIONS_NAME
the name of the EcalReconConditions table (must match python registration name)
double totGain(const ldmx::EcalID &id) const
get the TOT gain
const T & getCondition(const std::string &condition_name)
Access a conditions object for the current event.
Implements an event buffer system for storing event data.
Definition Event.h:42
bool exists(const std::string &name, const std::string &passName, bool unique=true) const
Check for the existence of an object or collection with the given name and pass name in the event.
Definition Event.cxx:92
Class which represents the process under execution.
Definition Process.h:36
Class encapsulating parameters for configuring a processor.
Definition Parameters.h:29
const T & get(const std::string &name) const
Retrieve the parameter of the given name.
Definition Parameters.h:78
void setYPos(float ypos)
Set the Y position of the hit [mm].
void setID(int id)
Set the detector ID.
void setZPos(float zpos)
Set the Z position of the hit [mm].
void setXPos(float xpos)
Set the X position of the hit [mm].
void setTime(float time)
Set the time of the hit [ns].
void setAmplitude(float amplitude)
Set the amplitude of the hit, which is proportional to the signal in the calorimeter cell without sam...
void setEnergy(float energy)
Set the calorimetric energy of the hit, corrected for sampling factors [MeV].
Stores reconstructed hit information from the ECAL.
Definition EcalHit.h:19
Extension of DetectorID providing access to ECal layers and cell numbers in a hex grid.
Definition EcalID.h:20
Represents a collection of the digi hits readout by an HGCROC.
Stores simulated calorimeter hit information.